Kamis, 28 April 2011

thumbnail

Bikin Radio Dari Shell

Tutor kale ini aq coba berbagi “Bagaimana cara membuat Radio Online dan Bot Irc” buat teman ” yng penasaran pingin tahu gimana cara buatnya, nah ku coba share ya.. berikut langkah”Nye…

Yang harus di persiapkan adalah :

  • Shell Legal ato Ilegal Terserah mau yang mana.. aku Rekom pake yang ilegal yah. biar tahan lama.. hehehe.. :)
  • Winamp terserah mau versi yang berapa. yng belum punya softwarenya silahkan download disini
  • Microphone.. biar langsung siaran.. :P
  • Keseriusan biar bisa berhasil .. tu aja dah cukup

Step Inti. perhatikan langkah demi langkah, jangan sampai ada yang terlewati.

  • Login Ke Shell Anda dengan menggunakan putty jika blom punya silhkan download disni
  • Cari directory yang cocok sesuai kebutuhan. Untuk shell injekan biasanya yang full write
  • Tar -zxvf shoutcast-1-9-2-linux-glibc6.tar.gz
  • cd shoutcast-1-9-2-linux-glibc6
  • Edit File sc_serv.conf Caranya dengan mengetikan Pico sc_serv.conf kalau nggk berhasil coba dengan perintah Nano sc_serv.conf
  • Perhatikan Edit bagian ini MaxUser=32( Banyaknya user yg bisa dengerin radio, terserah mau naruh berapa ),
  • Password=changepass (ganti password buat konek nanti ke Winamp )
  • PortBase=8000 ( Port standar nya 8000)
  • AdminPassword=changeme ( ganti password admin untuk masuk ke Shoutcast administrator 7)
  • Sekarang Save, Tekan CTRL + X
  • Tekan Y untuk ya , dan selanjutnya press enter
  • Run sc_serv dengan Cara ./sc_serv

Instalasi dan kofigurasi Shoutcast berhasil Selanjutnya Ketahap Berikut.

  • Install DSP Plugin Di server Windows XP Download
  • Buka Winamp dan Tekan CTRL + P
  • Cari Menu Plug-ins, Dsp/Effect , Pilih : [dsp_Nullsoft SHOUTcast Source DSP v1.9.0sc.dll] Klik 2x dan klik Connections.
  • Address : Url_Radio, Port : 8000 Password : password yang sudah di kofigurasi contoh tahapan diatas, lalu Pilih Ecoder 1 || Yellowpages : Deskripsi Radio terserah mo isi sapaan or apa saja || Genre / Jenis Musik Yang diPutar, Examp : Pop, Alternative, Rock Dll. || Klik Menu Encoder : Encoder 1 , Encoder Type : MP3 Encoder || Klik Input : Winamp [Recommended] Fungsinya Biar Listener Mendengarkan radio dan Soundcard input. Fungsinya untuk siaran.
  • Konfigurasi selesai. klik Connect. select lagu kesukaan dan tekan play.
  • kLo udah Buka browser Ketik : http://www.Url_Radio.Low:8000 dan untuk mendengarkan radio anda sendiri Buka atau ADD URL di Winamp Low : http://www.Url_Radio.Low:8000/listen.pls
  • FINISH. Semoga Berhasil :)

Sekarang Tinggal gmna cara agar Radionya Stream ke IRC

  • Buat Bot Eggdrop untuk Load tcl Radio untuk pembuatan bot eggdrop silahkan klik disini
  • Ke folder scripts dengan cara cd scripts dan Wget http://uranus.do.am/eggdrop/tcl/xradio.tcl
  • Edit bagian terpenting pada bagian :

set radiochans “”
set streamip “Http://url.radioanda”
set streamport “8000″
set streampass “password”

  • Silahkan Run bot eggdrop apbila dah selesai konfigurasi

Gudluck.. Semoga Bermanfaat..

Minggu, 24 April 2011

thumbnail

Tip's Selancar Dengan Aman Di Web Popoler

joko-electro - Menurut para periset keamanan di WatchGuard, ancaman terhadap jaringan korporat yang paling cepat perkembangannya saat ini adalah aplikasi media sosial berbasis web. Aplikasi jenis ini bisa melumpuhkan keamanan jaringan, membuka data-data sensitif dan dapat mengurasi produktivitas karyawan.

Ada sejumlah alasan mengapa aplikasi media sosial bisa mendatangkan risiko bagi bisnis, sebesar apapun ukurannya. Berikut beberapa di antaranya:

• Kehilangan Produktivitas: Sejumlah lembaga riset telah melaporkan bahwa Amerika Serikat kehilangan milliaran dollar per tahun akibat penurunan produktivitas. Karyawan kehilangan produktivitas karena waktunya tersedot ke situs-situs media sosial. Walaupun situs-situs media sosial juga bermanfaat untuk kolaborasi dan komunikasi, administrator TI tidak memiliki kemampuan untuk mengelola dan mengendalikan aplikasi Web untuk produktivitas bisnis atau aplikasi Web yang berupa games.

• Kehilangan Data: Walaupun sejumlah negara sudah memiliki aturan tentang kerahasiaan data, kalangan bisnis masih mengkhawatirkan terjadinya kebocoran data, baik disengaja maupun tidak. Sayangnya kekuatan media sosial sebagai media komunikasi di sisi lain menciptakan risiko potensial kebocoran informasi dan data-data rahasia. Administrator harus memiliki kendali atas aplikasi untuk mengurangi risiko kehilangan data, secara sengaja atau tidak.

• Peranti lunak berbahaya (malware) dan sumber serangan: WatchGuard memprediksikan jaringan sosial akan menjadi sumber serangan malware dalam beberapa ke depan karena tiga alasan:

(1) Situs jejaring sosial berkembang atas dasar kepercayaan. Tujuan orang menggunakan media sosial adalah untuk saling berinteraksi dengan orang-orang yang dianggap 'teman.' Artinya, ada kepercayaan dalam interaksi tersebut. Padahal, media sosial tidak memiliki kemampuan teknis untuk melakukan validasi apakah mereka yang dianggap teman itu adalah orang yang sebenarnya. Lingkungan yang berdasarkan kepercayaan pada media sosial ini adalah ladang yang subur untuk penipuan dengan metode social engineering (rekayasa sosial).

(2) Situs jejaring sosial memiliki banyak kelemahan teknis. Teknologi Web 2.0 memang menjanjikan sejumlah keunggulan, namun di dalamnya juga tersimpan berbagai kelemahan. Kompleksitas dari pengembangan aplikasi Web 2.0 bisa menciptakan kesalahan pada kode pemrograman sehingga aplikasi itu rawan terhadap ancaman aplikasi Web seperti SQL Injection dan serangan cross-site scripting (XSS). Apalagi, konsep Web 2.0 yang mengijinkan pengguna yang tidak diketahui kredibilitasnya memasukkan konten ke Website bertentangan dengan paradigma sekuriti tradisional. Secara sederhana, situs web media sosial lebih rawan terhadap eksploitasi kelemahan Web dibandingkan situs Web yang tidak interaktif.

(3) Popularitas jejaring sosial. Menurut lembaga analis Compete, Facebook adalah tujuan berselancar di Internet yang paling populer setelah Google, diikuti Twitter dan YouTube. Para penyerang tertarik dengan popularitas situs-situs seperti itu karena mereka bisa mendapatkan 'tingkat pengembalian modal' atas serangan yang mereka lakukan.

Berbagai alasan di atas, riset Watchguard telah menyusun daftar media sosial yang beresiko tinggi terhadap keamanan jaringan perusahaan:

1. Facebook. Facebook menjadi situs jejaring sosial yang paling berbahaya saat ini, karena begitu populernya di kalangan pengguna, termasuk bisnis. Dengan lebih dari 500 juta pengguna, Facebook menjadi lahan subur bagi peretas (hacker). Ditambah lagi sejumlah kekhawatiran teknis, seperti open App API (Application Programming Interface).

2. Twitter. Banyak orang tidak mengira ancaman tak bisa datang hanya dari 140 karakter, itu adalah asumsi yang salah. Dalam beberapa kasus, posting Twitter yang pendek justru menciptakan kelemahan dari penyingkat URL. Fasilitas penyingkat URL ini memang bisa menghemat karakter, namun bisa disalahgunakan peretas untuk membuat tautan-tautan berbahaya. Selain itu, Twitter terancam serangan dari kelemahan terkait Web 2.0 dan API, termasuk juga worm.

3. YouTube. Sebagai salah satu situs video terpopuler di Internet, para peretas juga mengincar YouTube. Para peretas sering membuat laman Web berbahaya yang menyamar sebagai laman video YouTube. Selain itu, para penyerang sering membanjiri bagian komentar dari YouTube dengan spam dan tautan-tautan berbahaya.

4. LinkedIn. LinkedIn membawa beban lebih berat karena situs ini umumnya berorientasi bisnis. Hal ini juga menarik minat peretas karena sifatnya yang sangat terpercaya. Karena pengguna LinkedIn banyak menggunakan situs ini untuk menjalin relasi bisnis, mereka umumnya menampilkan informasi yang bisa jadi sensitif dan rahasia, tanpa mereka sadari.

5. 4chan. Adalah website berbagi-pakai gambar yang sangat populer. 4chan sudah banyak terlibat dalam berbagai serangan Internet terkait "anonymous," yang merupakan satu-satunya username yang didapatkan penggunanya. Para peretas membanjiri forum 4chan dengan spam.

6. Chatroulette. Adalah website yang memungkinkan pengguna kamera Web melakukan chat dengan orang lain secara acak. Sifat website yang anonim ini menjadi target empuk bagi para pemangsa Internet.

thumbnail

ManfaatkanOvi Store Sebagai Media E-mail Dan penyimpan Data

KOMPAS.COM/TRI WAHONO
Nokia E7, generasi teranyar Communicator.

JAKARTA, joko-electro - Kalau selama ini hanya konten gratis yang tersedia, Nokia Indonesia akhirnya merilis layanan konten premium OVI Store di Indonesia, Selasa. Untuk sementara, layanan konten premium tersedia di layanan seluler Telkomsel. Lebih dari 15.000 konten premium tersedia untuk diunduh.

"Peluncuran layanan metode penagihan langsung melalui operator selular ini merupakan lompatan besar dan inovatif bagi Nokia Indonesia, dan merupakan yang pertama di Indonesia, dalam menghadirkan akses yang semakin luas, mudah dan nyaman bagi para pengguna ke lebih dari lima belas ribu konten di Ovi Store," kata Bob McDougall, Country Manager Nokia Indonesia dalam rilis persnya.

Tujuan utama dari kerjasama ini adalah memperluas akses pengguna perangkat Nokia dan pelanggan Telkomsel kepada konten hiburan, aplikasi, dan personalisasi dari penyedia konten terkemuka di dunia. Layanan inovatif yang menawarkan konten-konten premium terpopuler ini didukung oleh jangkauan global Ovi Store serta jaringan terluas dan berkulitas terbaik di Indonesia milik Telkomsel. Layanan ini juga ditunjang paket data internet yang disesuaikan dengan kebutuhan konsumen.

Konten premium berbayar hadir dalam berbagai varian menarik dengan harga yang terjangkau, mulai dari Rp 3.000 untuk themes premium, Rp 5.000 untuk Angry Birds versi lengkap untuk platform Symbian^3, Angry Birds Seasons, Farm Frenzy, Real Football Manager 2010, dan EA Premium games; hingga Rp 10.000 untuk aplikasi personal Wi-Fi seperti JoikuSpot Premium dan ribuan games berdefinisi tinggi dari berbagai pengembang game terkenal seperti Gameloft dan EA.

Melalui layanan premium Ovi Store, Nokia juga memberi dukungan nyata kepada para pengembang aplikasi berbasis Symbian maupun Java dengan memberikan wadah untuk memasarkan kreasinya kepada konsumen luas baik lokal maupun global dengan investasi tak lebih dari 1 Euro. Kini melalui peluncuran penagihan Ovi bersama Telkomsel, kesempatan bagi ekosistem pengembang berbasis Symbian semakin terbuka lebar.

"Terwujudnya kerjasama ini merupakan bukti nyata dukungan Nokia terhadap ekosistem perangkat dan aplikasi berbasis Symbian," ujar Bob MacDoughall. Para pengembang aplikasi platform Nokia (Symbian, Java, dan Qt) bisa mulai meraih keuntungan langsung. Nokia dan Telkomsel melalui kerjasama ini mengajak para pengembang aplikasi untuk secara aktif mengembangkan aplikasi dan konten menarik, untuk dipasarkan di Ovi Store.

segera kunjungi http://www. ovi.com

thumbnail

Intel Manipulasi Pasar Dagang

INTEL
Chip Intel Atom.

SANTA CLARA, joko-electro - Untuk mengejar kepemimpinan teknologi, banyak perusahaan teknologi menerapkan strategi akuisisi. Tidak harus mengambil alih perusahaan lain yang sudah mapan, membeli perusahaan start up yang punya inovasi menjanjikan malah sering menjadi pilihan. Akuisisi pun tidak mamandang demografi.

Misalnya yang dilakukan Intel, perusahaan prosesor terkemuka di dunia, yang baru saja mengambil alih perusahaan SySDSoft dari Mesir. Perusahaan tersebut dinilai punya teknologi yang dibutuhkan Intel untuk mengejar teknologi 4G LTE.

Alasan akusisi ini karena kecanggihan dari 100 insinyur electronika dan computer software yang sangat canggih dan berprestasi. SySDSoft telah membuktikan kemampuannya mengembangkan produk-produk untuk pasar 4G LTE. SysSDSoft yang berbasis di Kairo, Mesir mengkhususkan diri dalam mengembangkan wireless system WiFi, USB dan Bluetooth.

SysSDSoft selanjutnya akan bernaung di Divisi Mobile Teknologi Intel Corp untuk mengembangkan system komunikasi multi data memakai 4G LTE, termasuk desain, dan pengembangan perangkat lunaknya secara efisien dan menguntungkan.

"Akuisisi teknik dan bakat, serta desain dari sebuah perusahaan yang berbasis di Mesir dalam bidang cutting-edge wireless dan teknologi komunikasi adalah yang pertama dari jenisnya untuk Intel di Timur Tengah," kata Arvind Sodhani, Presiden dari Intel Capital dan wakil presiden eksekutif Intel,

Dia menambahkan, akuisisi ini menunjukkan strategis jangka panjang, komitmen Intel untuk di kawasan Timur Tengah dan menghargai apresiasi para ahli muda, dan berbakat di Mesir khususnya. Semoga suatu waktu Intel mau juga menjaring sebanyak-banyak insinyur dan ahli komputer dari Indonesia.(joko-electro)

thumbnail

Black Berry Versi Tablet

AFP
The RIM PlayBook

LOS ANGELES, joko-electro — Jelang beberapa pekan sebelum BlackBerry World Conference yang akan digelar di Orlando, Florida, AS, 3-5 Mei 2011, BlackBerry PlayBook akhirnya resmi beredar. Tablet pertama buatan Research In Motion Kanada itu mulai bisa dinikmati konsumen,

Menurut sejumlah analis yang dilansir situs Wall Street Journal, Research In Motion (RIM) diperkirakan dapat mendistribusikan 2 juta hingga 4 juta BlackBerry PlayBook selama tahun 2011. Namun, firma analis Gartner memprediksi, tablet tersebut tidak akan lebih laku, baik dibandingkan dengan iPad maupun tablet berbasis Android.

Laporan terakhir Gartner yang dirilis 11 April 2011 menunjukkan, pada tahun 2015, platform iOS Apple tetap akan mendominasi pasar tablet dengan 47,1 persen, Android 38,6 persen, dan QNX (RIM) 10 persen. Sisanya web OS 3 persen, MeeGo 1 persen, dan lain-lainnya 0,2 persen.

"Butuh waktu dan upaya lebih keras bagi RIM untuk menarik para pengembang dan menyediakan ekosistem aplikasi dan layanan yang sesuai bagi QNX untuk bisa bersaing ketat dengan iOS dan Android," kata Carolina Milanesi, VP Research Gartner. Menurutnya, pasar terbesar bagi tablet tersebut adalah para konsumen enterprise yang memang sudah menggunakan solusi BlackBerry untuk layanan teknologi informasi.

BlackBerry PlayBook memang selama ini digembar-gemborkan hadir dengan fitur canggih untuk pengguna profesional. Tablet tersebut juga diklaim paling mendukung konten web saat ini, termasuk mendukung penuh Flash. BlackBerry PlayBook juga bisa difungsikan sebagai pasangan bagi BlackBerry karena fitur tethering-nya dapat menampilkan e-mail, kalender, dan informasi lain yang ada di smartphone BlackBerry pengguna.

RIM membanderol tablet ini dengan harga yang sama seperti pesaingnya. Saat ini baru tersedia model WiFi saja dengan harga 499 dollar AS untuk model berkapasitas memori 16 GB, 599 dollar AS untuk 32 GB, dan 699 dollar AS untuk model berkapasitas memori 64 GB.

thumbnail

KONTROVERSI SAMSUNG DAN IPHONE

Dituduh Tiru iPad dan iPhone, Apple Gugat Samsung

Dari kiri ke kanan, Samsung Galaxy S, iPhone 4, Galaxy Tab, iPad 2.

WASHINGTON, joko-electro — Dua produsen besar elektronik dan komputer saat ini tengah bersitegang. Mereka adalah Apple Inc dan Samsung Electronics Co. Apple menggugat Samsung pada 15 April 2011 lalu di Pengadilan Oakland, California, AS, dengan tuduhan produk smartphone Galaxy keluaran Samsung mencontek iPhone keluaran Apple. Bahkan, bentuk tablet Galaxy Tab juga menyerupai iPad yang sebelumnya sudah dipatenkan.

Jika dilihat, memang ada persamaan penggunaan di antara kedua produk canggih itu. Persamaannya terletak pada gestur tangan pada saat mengoperasikan Galaxy dengan iPad. Menurut Apple, ponsel dan tablet Galaxy yang menggunakan peranti lunak Android keluaran Google didesain dengan mencontek produk iPad.

Perselisihan antara dua perusahaan tablet besar dunia itu terjadi di tengah tingginya permintaan atas produk tersebut. Padahal, sebelumnya, hubungan bisnis antara keduanya cukup lancar. Apalagi, Apple sangat bergantung dengan Samsung dalam menyuplai chip untuk iPhone dan iPad. Namun, setelah Samsung merilis Galaxy Tab, Apple menuduh perusahaan tersebut sebagai salah satu perusahaan yang meramaikan "Tahun Mencontek" atau year of copy cat pada 2011.

"Yang mengkhawatirkan, Anda akan melihat hubungan strategis antara Samsung dan Apple kian memburuk belakangan ini. Apalagi, produk Samsung juga mendapatkan tempat di pasar sehingga Apple terus mengawasi gerak-gerik Samsung," jelas Kim Young Chan, analis Shinhan Investment Corp. (joko-electro)

thumbnail

Nusantara Super Highway Bentangkan Serat Optik 47.099 Km

JAKARTA, joko-electro - Pemerintah boleh punya mimpi bernama Palapa Ring yang akan menyatukan seluruh wilayah nusantara dengan serat optik untuk mendukung komunikasi data kecepatan tinggi. PT Telkom pun punya visi serupa yang akan diwujudkannya sebagai penyedia jaringan telekomunikasi terbesar dengan proyek "Nusantara Super Highway".

"Nusantara Super Highway merupakan kelanjutan dari cita-cita Telkom untuk menyatukan Nusantara melalui visi 'Nusantara 21' yang sudah dimulai sejak 2001 dengan teknologi berbasis satelit," jelas Direktur Network and Solutions Telkom, Ermady Dahlan dalam siaran pers yang diterima Kompas.com,media .

Namun, sesuai dengan perkembangan teknologi dan kebutuhan pasar, basis teknologi Visi Nusantara 21 disesuaikan menjadi optical network platform. Pembangunan Nusantara Super Highway dibagi ke dalam enam Ring untuk menghubungkan berbagai gugusan kepulauan di Indonesia. Enam Ring tersebut sejalan dengan penetapan "Enam Koridor Ekonomi' oleh Pemerintah Republik Indonesia.

Keenam Ring dari Nusantara Super Highway tersebut sebagai berikut:

1. Ring Sumatera sepanjang 9.981 km, terbentang dari kota Banda Aceh hingga kota Bandarlampung; Ring terakhir diselesaikan adalah pembangunan Ring yang menghubungkan kota Banda Aceh hingga Medan;

2. Ring Jawa sepanjang 11.524 km, terbentang dari kota Merak hingga kota Banyuwangi;

3. Ring Kalimantan sepanjang 6.664 km, terbentang dari kota Pontianak hingga Tarakan;

4. Ring Sulawesi dan Maluku Utara sepanjang 7.233 km, terbentang dari kota Makasar, Manado, Ternate hingga Sanana.

5. Ring Bali dan Nusa Tenggara sepanjang 3.444 km, terbentang dari kota Denpasar, Mataram, Kupang hingga Atambua.

6. Ring Kepulauan Maluku dan Papua sepanjang 8.254 km, terbentang dari kota Ambon, Fak-Fak, Sorong, Manokwarihingga Jayapura dan Merauke.

Pembangunan semua Ring ICT Nusantara Super Highway dimaksud mempergunakan konfigurasi Palapa Ring. Proyek-proyek tersebut dibiayai oleh dana pembangunan Telkom sendiri. Pembangunan infrastruktur ICT tersebut akan diselesaikan secara bertahap hingga 2014 dengan fokus di Kawasan Timur Indonesia karena pembangunan infrastruktur ICT di Kawasan Barat Indonesia sudah diselesaikan. Bagian proyek yang diselesaikan hingga 2010 adalah Ring Aceh, Ring JaKa2LaDeMa (Jawa-Kalimantan-Sulawesi-Denpasar-Mataram), dan Ring MKCS (Mataram-Kupang Cable System).

Pada 2011 ini, Telkom sudah mulai membangun backbone fiber optic yang akan menghubungkan Manado, Ternate, Ambon, Fak Fak, Sorong, Manokwari, Jayapura, dan Fak Fak ke Timika. Diharapkan pada 2012 proyek tersebut sudah dapat dioperasikan untuk daerah Ternate dan Ambon serta selesai keseluruhan pada 2014. Sehingga pada 2015, jaringan Nusantara Super Highway akan memiliki panjang tidak kurang dari 47.099 km yang membentang dari Sumatera hingga Papua dan meliputi 421 kota/kabupaten atau 85 persen dari kota/kabupaten yang ada.

Rabu, 20 April 2011

thumbnail

Crack Poin Blank 2 Langkah aja

Dua Langkah Hack PB (By pass Point Blank)

Tools yang diperlukan diantaranya:

1. Hide Toolz (seperti biasa)
2. MHS Engine
3. Niat dan Keyakinan wwkwkwkwk

tidak perlu basa-basi lagi langsung saja

langkah 1

ekstrak semua tool hasil downloadan di atas, Buka Hide Toolz (Jalankan) kemudian jalankan MHS engine nya (Win7 ato Win Vista bukanya dengan Open as Administrator, klo ngga, ga bkalan bisa open process MHS nya)

kemudian HIDE MHS nya dengan Hide Toolz. Caranya Seperti biasa.

langkah 2

Jalankan Point Blank sampai masuk ke server (Jangan lupa pakai Windowed Mode) kemudian di MHS buka Proses nya ke Point Blank, caranya yaitu Pada Menu FILE �> OPEN PROCESS setelah itu tentukan Prosesnya ke PointBlank.exe

Pada Jendela Open Process disini yang penting yaitu untuk Bypass atau agar MHS ini tidak terdeteksi oleh HackShield Point Blank, centang OPEN IN RESTRICTED MODE (IMPROVES UNTEDECTABILITY) hal ini yang membuat engine ini tidak terdeksi (canggih khan^^).

kemudian masuk ke Point Blank Lagi Buat Room sendiri seperti Tutorial Sebelumnya. kemudian ada perbedaan pada Engine ini dengan engine cheat yang lain. Diantaranya yaitu cara Scan Address dan Untuk Freeze Address.

untuk Scan Address kita tinggal Klik Tombol atau tanda Search (Kaca Pembesar) untuk FIRST SEARCH di Kolom seleh kiri pada MHS di bagian Found Address. Kemudian tinggal tentukan Type data yang akan kita Scan sesuai dengan Tutorial Cheat Sebelumnya.

kemudian untuk NEXT SEARCH nya tinggal klik tanda Search disebelah kanan dari search yang pertama (Sub Search)�.

Istilah untuk Freeze, pada MHS adalah LOCK
semoga bisa berjalan

Selasa, 12 April 2011

thumbnail

JFET Bass Preamp

Random header image... Refresh for more!

jfet-bass-preamp

I wanted a warm, tube-like sound with as few stages as possible. I believe that part of the clarity and directness of a tube amp comes from the fact that there are so few phase invertions compared to a normal solid state (not to mention the different kinds of unpleasant distortions made by op-amps). So I came up with the absolute minimum setup: Two (inverting) gain stages and one source follower/impedance converter. JFETs, because they behave similar to tubes at overload conditions (of course, nothing but a tube really sounds like a tube…)
The EQ Section was originally planned to be like an Ampeg SVT filter. It sounded good, but I could not get rid of the hum (used a small transformer for the filter coil), also it was rather noisy compared to the rest of the preamp. So I had to make a compromise (op-amps!), but this circuit really works fine, and most important, it can be bypassed. In fact I rarely need it, just use the “Ultra High”- and “Ultra-Low”-switches.

The best sound I got with the “Sensitivity” trimpot turned about 3/4 way right. All the way up gave me a little too much dirt, because the first stage clipped and it was no use turning down the “Gain” pot. Of course, this depends on the instrument used.

jfet-bass-preamp-layout

Fig: Component Layout

jfet-bass-preamp-pcb

Fig : PCB layout

thumbnail

200W ATX PC POWER SUPPLY

Franch version in PDF thanks to Cah-Technik Crue

Here I bring you wiring diagram of PCs power supply of DTK company. This power supply has ATX design and 200W performance. I was drawed diagram, when I repaired this power supply.

This power supply circuit uses chip TL494. Similar circuit is used in the most power supplies with output power about 200W.Device use push-pull transistor circuit with regulation of output voltage.

ATX schema Line voltage goes through input filter circuit (C1, R1, T1, C4, T5) to the bridge rectifier. When voltage is switched from 230V to 115V, then rectifier works like a doubler. Varistors Z1 and Z2 have overvoltage protect function on the line input.
Thermistor NTCR1 limits input current until capacitors C5 and C6 are charged. R2 and R3 are only for discharge capacitors after disconnecting power supply. When power supply is connected to the line voltage, then at first are charged capacitors C5 and C6 together for about 300V.
Then take a run secondary power supply controlled by transistor Q12 and on his output will be voltage. Behind the voltage regulator IC3 will be voltage 5V, which goes in to the motherboard and it is necessary for turn-on logic and for "Wake on something" functions.
Next unstabilized voltage goes through diode D30 to the main control chip IC1 and control transistors Q3 and Q4. When main power supply is running, then this voltage goes from +12V output through diode D.

Stand-By mode

In stand-by mode is main power supply blocked by positive voltage on the PS-ON pin through resistor R23 from secondary power supply. Because of this voltage is opened transistor Q10, which opens Q1, which applies reference voltage +5V from pin 14 IO1 to pin 4 IO1. Switched circuit is totally blocked. Tranzistors Q3 and Q4 are both opened and short-circuit winding of auxiliary transformer T2.Due to short-circuit is no voltage on the power circuit. By voltage on pin 4 we can drive maximum pulse-width on the IO1 output. Zero voltage means the highest pulse-width. +5V means that pulse disappear.

Now we can explain function of running power supply.

Somebody pushes the power button on computer. Motheboard logic put to ground input pin PS-ON. Transistor Q10 closes and next Q1 closes. Capacitor C15 begins his charging through R15 and on the pin 4 IC1 begins decrease voltage to zero thanks to R17. Due to this voltage is maximum pulse-width continuosly increased and main power supply smoothly goes run.

In a normal operation is power supply controlled by IC1. When transistors Q1 and Q2 are closed, then Q3 and Q4 are opened. When we want to open one from power transistors (Q1, Q2), then we have to close his exciting transistor (Q3, Q4). Current goes via R46 and D14 and one winding T2. This current excite voltage on base of power transistor and due to positive feedback transistor goes quickly to saturation. When the impulse is finished, then both exciting transistors goes to open. Positive feedback dissapears and overshoot on the exciting winding quickly closes power transistor. After it is process repetead with second transistor. Transistors Q1 and Q2 alternately connects one end of primary winding to positive or negative voltage. Power branch goes from emitor of Q1 (collector Q2) through the third winding of exciting transformer T2. Next throug primary winding of main transformer T3 and capacitor C7 to the virtual center of supply voltage.

Output voltage stabilisation

Output voltages +5V and +12V are measured by R25 and R26 and their output goes to the IC1. Other voltages are not stabilised and they are justified by winding number and diode polarity. On the output is necessary reactance coil due to high frequency interference.
This voltage is rated from voltage before coil, pulse-width and duration cycle. On the output behind the rectifier diodes is a common coil for all voltages. When we keep direction of windings and winding number corresponding to output voltages, then coil works like a transformer and we have compensation for irregular load of individual voltages.
In a common practise are voltage deviations to 10% from rated value. From the internal 5-V reference regulator (pin 14 IC1) goes reference voltage through the voltage divider R24/R19 to inverting input(pin 2) of error amplifier. From the output of power supply comes voltage through divider R25,R26/R20,R21 to the non inverting input (pin 1). Feedback C1, R18 provides stability of regulator. Voltage from error amplifier is compared to the ramp voltage across capacitor C11.
When the output voltage is decreased, then voltage on the error amplifier is toodecreased. Exciting pulse is longer, power transistors Q1 and Q2 are longer opened, width of pulse before output coil is grater and output power is increased. The second error amplifier is blocked by voltage on the pin 15 IC1.

PowerGood

Mainboard needs "PowerGood" signal. When all output voltages goes to stable, then PowerGood signal goes to +5V (logical one). PowerGood signal is usually connected to the RESET signal.

+3.3V Voltage stabilisation

Look at circuit connected to output voltage +3.3V. This circuit makes additional voltage stabilisation due to loss of voltage on cables. There are one auxiliary wire from connector for measure 3.3V voltage on motherboard.

Overvoltage circuit

This circuit is composed from Q5, Q6 and many discrete components. Circuit guards all of output voltages and when the some limit is exceeded, power supply is stopped.
For example when I by mistake short-circuit -5V with +5V, then positive voltage goes across D10, R28, D9 to the base Q6. This transistor is now opened and opens Q5. +5V from pin 14 IC1 comes across diode D11 to the pin 4 IC1 and power supply is blocked. Beyond that goes voltage again to base Q6. Power supply is still blocked, until he is disconnected from power line input.

Links

ATX Power Connector

Pin Signal Color 1 Color 2 Pin Signal Color 1 Color 2
1 3.3V orange violet 11 3.3V orange violet
2 3.3V orange violet 12 -12V blue blue
3 GND black black 13 GND black black
4 5V red red 14 PS_ON green grey
5 GND black black 15 GND black black
6 5V red red 16 GND black black
7 GND black black 17 GND black black
8 PW_OK grey orange 18 -5V white white
9 5V_SB violet brown 19 5V red red
10 12V yellow yellow 20 5V red red

thumbnail

250 W S.M.P.S. with Power FETs

Safety Instructions

Caution mortal danger: The following circuit operates at a mains voltage of 230 Vac. Because of rectification, some of the components carry dc voltages of more than 322 V. The circuit should be disconnected from the mains and de-energized before any work is attempted on it. Note that capacitors located on the primary side will be charged with high voltage for several seconds even after switching of the mains voltage.

Experiments with the PC power supply encouraged me to produce an "improved" design. Like the original design, the new power supply is also a forward converter with a half-bridge topology. The differences to the modified PC power supply consist of the following items: 1) two power FETs are used instead of bipolar transistors as power switches, 2) a synchronous rectifier on the secondary side instead of power diodes, 3) the elimination of a switch driver stage (current-proportional control), and 4) a simpler over-current and over-voltage monitor. With the magnetic components (output transformer, driver transformer, chokes...) stripped from a PC power supply, the new power supply delivers a max. power output of 250 W with efficiency up to 90 %. The power supply can handle 20 % overload for a short duration.

Magnetic components from a PC power supply

The magnetic components of AT-style PC power supplies don't vary much. They are usually designed for a switching frequency of 25... 40 kHz and a power output of 200... 240 W. The transformers on the S.M.P.S circuit boards are to be found often in either a small, or a somewhat larger size. I am not able to say, whether the larger size brings more power or if it is only an older design. [Note: the larger size is usually found in flyback supplies. ja] For the new power supply I preferred the larger transformers because they have more space available for additional turns in all three transformers. The smaller transformers are completely filled with copper and insulation, and are therefore only marginally suitable for modification.

Fig. 1: Transformers from the PC power supply

{short description of image}


Mains rectifier and filter

This circuit section is uncomplicated. The common-mode choke Dr1 (mains filter) is followed by a NTC resistor for limiting the inrush current. Its resistance amounts to 5 ohms cold, and after few minutes the warm resistance is less than one ohm. The 230 Vac rectifier is generously specified at 4 A, so no cooling is necessary. The values of capacitors of C3 and C4 is determined by the allowable ripple voltage Ubr, and the number of mains-voltage half-cycles to be bridged [i.e., 'hold-up' time required]. For Ubr = 25 V and zero half-cycles, two 470 uF capacitors in series are sufficient. This specification applies to maximum load during low mains-voltage Umin = 230 Vac - 15%

Fig. 2: Filter, rectifier and power switches
{short description of image}

Power switches

FET power switches were used for their short rise and fall times and the easy, component-saving driver circuit. If one is content with switching times of 100 ns, a small driver transformer and two gate resistors suffice for driving the FETs. Unfortunately, there's no way to avoid re-winding the transformer secondary, which is needed to supply the proper gate voltages. The single turn and 2 x 8 turns must be removed from transformer Tr4. Instead of this, wind 2 x 16 turns (bifilar). A winding ratio of 16 : 26 and a 20 V control signal from IC1 provides the FETs' gates with 10 V of drive, enough to achieve the FETs' specified Ron of 0,75 ohms and thus very small conduction losses. Dynamic (switching) losses at 50 kHz are negligible with the before-mentioned switching times. The PWM IC drives enough current to switch the FETs on and off quickly. Increasing the switching frequency from the original 33 kHz (PC power supply) to 50 kHz (new power supply) allows the transformer to more energy. You can't, however, arbitrarily increase frequency with a given transformer; the transformer is only usable over a certain frequency range. Experiments showed the transformer can cope with a factor of 1.5 without problems (overheating).

Control circuit

After switching the 230 Vac mains voltage on, an auxiliary voltage from the small 50 Hz transformer Tr1 powers the PWM controller SG3525. The error amplifier in the SG3525 compares a portion of the 13,8 output voltage (actual value) with the internal +5,1 V reference voltage (set value) and forms from it an error voltage for the pulse width modulator. The modulator sends alternate control pulses via its two outputs to the transformer Tr4. The pulse duration is inversely proportional to the error voltage. Increased loading on the +13.8 V output makes for wider pulses; lighter loading causes narrower pulses. The switching frequency of the power switches is 50 kHz. For higher frequencies the FETs are usable, but not the magnetic components salvaged from the PC power supply. The oscillator frequency is determined by the components attached to pin 5 and 6. R14 determines the dead time, which is absolutely necessary to avoid simultaneous conduction of the two switching transistors. Since they lacking the storage time limitation of bipolar transistors, a very small value can be set for the the new FETs switches. With 1 us deadtime and 20 us period duration--50KHz--the FETs can theoretically conduct 95 % of the time and thus deliver energy to the output. Soft-start capacitor C13 charges after power-on, producing a soft-start with narrow pulses initially, then wider control pulses afterwards. Terminal (a) of the driver transformer Tr4 remains free. Just one half (26 t) of the primary turns (b - c) and the 16 turns of the secondary winding are sufficient to provide the necessary ratio of 0,6.

Fig. 3: PWM control and monitoring
{short description of image}

Monitoring functions

Two protection circuits are included in the new power supply. The transformer Tr2 is used as current detector and produces a voltage across R16 that's proportional to the current flow through the power switches. If the voltage at the shutdown pin 10 exceeds the limit value adjustable with P1, the control IC switches off immediately, restarting after a short duration. The reason for this is usually excessive current at the secondary side of the power transformer, either caused by a short-circuit, or an overload to the output. The load and the circuit itself are likewise protected from overvoltage at the Vo output. The SG3525 switches off at Vo > 15 V. Note: Both protection circuits are ineffective if the slider of P1 is adjusted to Gnd potential.

Synchronous rectifier

A rectifier made with fast recovery diodes loses up to 17 W at 18 A output current. Even with a 30 A / 45 V Schottky diode, the losses are still 12 W. This is the supply's greatest single loss, exceeding the losses at the mains rectifier, power switches, transformers, and output choke combined.

An improvement brings here a semi synchronous rectifier with two low impedance power FETs. FETs with a low Ron of e.g. 15 mOhm have only a voltage drop of 0,3 V at 18 A during the conduction phase. Good Schottky diodes are rated at 0,6 V. In the literature, however, with push-pull topology, such circuits are advised against because the choke Dr2's current will flow backwards through the FETs' parasitic body diodes while they're in the 'off' state. High switching losses result due to the storage charge of the body diodes, which has to be removed first before/during the transition to the normal operation. This loss destroys the benefits achieved during the conduction phase.

The following circuit avoids this disadvantage, since the body diodes never conduct. Schottky free-wheeling diode D3 has a substantially smaller forward voltage Uf than the FET's body diode, and so takes over choke Dr2's current. D3 has minimal storage charge, so switching is extremely fast and losses are low. As a test, D3 was removed. The FETs' heat sink warmed up thereupon by around +10 °C, even though the body diode of the IRFZ44 used has a very good trr (reverse recovery time) of 47 ns.

With a typical duty cycle of 57 % the loss in the two FETs together is 3.6 W. The free wheeling diode D3 conducts for the remaining time, dissipating 4.6 W. Losses below 8.2 W can only be achieved by replacing free-wheeling diode D3 with a FET. Since driving this FET is more complex than for VT3 and VT4, I did without this. A second complication is that with mains undervoltage or high output current, the switch-on time of VT3/4 rises, but not the switch-on time of D3.

Fig. 4: Synchronous rectifier
{short description of image}

Construction and alignment

The power supply uses an 82 x 122 mm glass-epoxy circuit board. Other materials are not suitable, as the board must be able to carry relatively heavy components and realize high-current copper tracks. The components for regulation and monitoring are mounted on a small strip board. Sorry, but I was too lazy to design a PCB layout for this circuit part.

Fig.5: PCB layout (1:1) and assembly
{short description of image}

For the interconnection of the components for regulation and monitoring a 40 x 45 mm small strip-board is sufficient. The copper tracks (pink) are to be removed in the indicated places. A wood or a metal drill with a diameter from 3 to 4 mm is suited to this task. Jumpers are drawn as broken lines. (They're easily forgotten during assembly! The same applies to the horizontal ground-potential bar within the upper area of the strip-board that distributes Gnd potential onto the vertical copper tracks.

Fig.6: View of the strip-board soldering side (2:1)
{short description of image}

Fig. 7: View of the strip-board component side (2:1)

{short description of image}

Transformers

The following drawing shows the transformers stripped from a PC switching power supply. The data were determined as best as possible by measurements, counting turns, and calculations.

Before using the transformers, it must to be confirmed that the size, number of layers, wire size, number of turns and phasing correspond to the specification in the drawing and the photos. If there's any doubt about whether your transformers match these specs, the transformers should not be used.

Fig. 8: PC transformers and modifications
{short description of image}

Heat sinks

The heat sinks are nothing special, manufactured from an approx. 1 mm thick aluminum plate. VT1 and VT2 are to be fastened isolated on the first heat sink. The FETs must not have a electrical connection to each other, or to the heat sink. With proper, professional assembly of the transistors [e.g., insulated from the heatsink], touching the heat sink isn't dangerous. On the secondary side it is somewhat simpler. VT3, VT4 and D3 carry no dangerous voltage, and need thus no isolation. Because of the FETs case and the Schottky diodes case have the same potential, there is no problem with mounting all three components directly onto the second heat sink. Be sure, however, that there's no electrical connection between the heat sink itself and the power supply housing or electrical components.

Fig.9: Heat sink drawings
{short description of image}

Parts list (1)

Resistors, capacitors and semiconductors

Parts No. Value
R1, 2 120 kOhm, 0,5 W
R3 100 Ohm , 2 W
R4, 5, 9 1 kOhm
R6 10 Ohm, 2 W
R7, 10 10 kOhm
R8 1,5 KOhm + 150 Ohm
R11 5,6 kOhm
R12, 13, 14 47 Ohm
R15, 16 150 Ohm
P1 10 kOhm trimming pot, 10 turns
NTC Heissleiter, 5 Ohm at 25 °C
C1, 2 0,1 uF 250 Vac
C3, 4 470 uF 200 V, 22 x 36 mm (diam. , H)
C5, 15 2,2 nF
C6 1 uF, 250 Vac
C9, 10 2200 uF, 35 V low ESR, 16 x 34 mm (Diam., H)
C7 100 µF, 35 V
C8, C20 10 nF
C11,12 0,22 µF
C13 10 uF, 25 V
C14 2,2 nF Styroflex
C16 2,2 uF
C17, 18, 19 0,047 uF
D1, 2 PXPR1507 etc. fast 200 V / 1A diode
D3 MBR3045, 30 A / 45 V Schottky diode
D4, 5, 6 BAT 46
D7 Zener diode, 13 V / 0,5 W
D8 1N4148
VT1, 2 IRF730
VT3, 4 IRFZ44N
IC1 SG3525A
Gl1 Rectifier bridge, dual in-line B40C800 DIP
Gl2 Rectifier bridge 400 V / 4 A

Parts list (2)

Transformers, chokes and miscellaneous

Parts No. Value
Tr1 0,5 W print transformer EE20/10, 15 Vac at 34 mA,
24 x 32 mm (Reichelt/Conrad)
Tr2 16 x 15 x 5 mm (W,H,D)
1 turn. prim.
2x 100 turns sec.
Tr3 40 x 35 x 12 mm (W,H,D) e.g. Tokin 25812 or. 25801
2x 20 turns prim. (L = 7 mH between a <=> c)
2x (3 + 4) turns sec. (L = 200 uH between d <=> f or d* <=> f*)
2x 4 turns sec. auxiliary winding for driving VT3/4
Tr4 22 x 19 x 6 mm (W,H,D)
2x 26 turns. prim.
2x 16 turns. sec.
Dr1 current compensated 2A mains voltage choke
Dr2 20 uH, T26-106 (yel. / white), 16 turns. 2x 1 mm Cu wires in parallel
better Magnetics Kool 259-77934-A7, 20 turns. 2x1 mm Cu wires in parallel
Additional mains filter general purpose 230 V / 2 A
Si 3,15 AT fuse, slow blow
PS Two pole mains switch
Miscellaneous PCB, heat sinks, isolation material, heat sink compounder etc.

The grey marked cells indicate the components, which can be scavenged from a PC power supply. The electrical data must be compared before using them, and the indicated modifications have to be made.

Testing the power supply

I urgently advise against immediate connection to 230 Vac. Testing of the new power supply should take place in several test phases for safety reasons, and for the avoidance of component destruction. The high voltage causes an immediate destruction of the components in the case of an error in the circuit.

Warning: Check temperature of components only if the mains voltage is switched off.

Phase 1:The first test applies to the PWM-IC and the power switch control. For running the PWM-IC, connect a 24Vdc lab power supply to Gnd and the positive plate of C7 (Vx). After switching on, the IC generates sharply rising and falling control pulses with maximum pulse duration at the output pins 11 and 14. With an oscilloscope, signals measured at the gate of VT2 (VT1) should look like the one shown in figure 9. It's very important that the signals have the indicated shape, voltage and frequency. Further, the signals at the gates of VT1 and VT2 should be opposite in phase (otherwise, both FETs would conduct at the same time, producing a short-circuit later, when applying supply voltage).

Fig. 9: VT2 (VT1) gate-source voltage
{short description of image}

Phase 2: Now, connect three car light bulbs (12 V / 21 W) to the 13,8 V output terminals. A 48 V / 1 A mains transformer feeds the S.M.P.S. via the L1 and N terminal with a galvanically isolated Ac voltage. The + 24 Vdc lab supply is still connected during this test. 60 Vdc at C3 / C4 is in Europe defined as a non-dangerous voltage. At this voltage the switching transistors can start operating, allowing one to perform testing without danger. For measurements with a dual-channel oscilloscope Gnd from the secondary section has to be connected temporarily to the (Y) test point of the primary section with a wire link. The bulbs glow at Vout = 4,3 Vdc if everything is right. Rectification is performed by the FETs body diodes only, because the VT3 and VT4 gate-source voltage is not high enough to switch on the FET. The PWM controller tries to produce 13,8 V at the output at maximum pulse duration / duty cycle. The latter cannot be successful due to the low 60 Vdc input voltage and the present transformer ratio.

Fig. 10: Voltage at test point (X) against (Y) und cathode D3 against Gnd
{short description of image}

Phase 3:If everything is all right so far, one can proceed with the exciting test at 230 Vac. The laboratory power supply, the 48 V transformer, the measuring instruments and all provisional cable links attached for the test etc. must obviously be removed. The three car bulbs are further needed as a load and for the functional checks. If after applying of the 230 Vac mains voltage the lamps light up brightly, the output voltage is 13.8 V, and no undefined noises or smells are noticeable, one has won the first round. If an error has slipped past the pre-testing undetected, the two switching transistors and copper tracks say “good-bye” with a more or less loud bang. With 5,7 A, the duty cycle D = tp / T = 5 us / 10 us is approximately 50 %.

Phase 4: For the following load test a dummy load is needed that can handle up to 300 W. Because such high power resistors are expensive, and not just laying about in the junk box, I instead took a 50 m a ring installation cable (3 x 1.5 mm2) . An individual wire has a resistance of 0.6 ohms and can dissipate the mentioned watts without problems. Depending on interconnection of the three wires, load resistances of 0,6 / 1,2 and 1.8 ohms are realizable. By the ampmeter impedance, including the appropriate measuring wires positioned in series, the resistance value increases by approx. 0.1 ohms. At Vo = 13,8 V the following table indicates the power output Po and the current Io as a function of the loading

Rl [Ohm] car bulbs Io [A] Po [W]
- / - 1x 12 V / 21 W 1,9 26
- / - 2x 12 V / 21 W 3,8 52
- / - 3x 12 V / 21 W 5,7 78
1,8 + 0,1 - / - 7,26 100
1,2 + 0,1 - / - 10,6 146
1,2 + 0,1 2x 12V / 21 W 10,6 + 3,8 198
1,2 + 0,1 3x 12V / 21 W 10,6 + 5,7 224
0,6 + 0,1 - / - 19,7 270

Additional measures for RFI noise reduction

Experience during the PC power supply modification have shown that the on-board filtering is insufficient for amateur radio applications. A pre-fabbed general purpose mains filter and a home made Pi filter direct to the 13,8 V output are used for improved RF noise reduction. To maintain control loop stability, the PI filter is outside the control loop, so its voltage drop isn't eliminated by the supply's regulation. Output voltage changes of several tens of millivolts under load changes have no importance for running a 100 W transceiver. The additional filters have to be mounted inside the S.M.P.S. case very close to the cable inlet and outlet.

Fig. 11: External components for RF noise reduction

{short description of image}

Operation experiences

Up to 10 A continuous output current, or operation with 50 % ESD and 18 A peak current are possible without a fan if sufficient natural air flow is present and the ambient temperature does not exceed 30 °C. A small CPU fan (40 x 40 mm) should be used for more than 10 A continuous current. The heatsink surface is not large enough to keep the FETs junction temperature below the limit value ( Tj < 100 °C). With a CPU fan the heat sink temperature remains below 28 °C (Tu = 20 °C). The following table shows the measured and calculated power dissipation Pv of the basic components at 250 W output power.

Abbr. Parts Pv [W]
Gl2, Dr1 Mains rectifier and filter 2,5
VT1 Switching transistors 4,0
VT2 4,0
R3 / C5 Snubbers 1,5
Tr3

Jumat, 08 April 2011

thumbnail

Sony NGP Dibanderol Mulai USD 250

Anda punya hobi maen game…? ada berita terbaru dan menarik buat anda. Sony berencana meluncurkan 2 model Next Generation Portable (NGP), versi 3G dan satu model yang hanya menggunakan Wi-Fi. Nah, menurut hasil survei yang diprakarsai Ubisoft, konsol tersebut diperkirakan bakal dijual mulai harga USD 250 untuk versi Wi-Fi dan USD 350 untuk 3G.
Jika menilik dari hasil survey tersebut, diperkirakan banyak gamer yang akan lebih tertarik dengan NGP Wi-fi ketimbang versi 3G yang terpaut harga USD 100. Namun ingat, harga tersebut hanya perkiraan saja dan belum diputuskan oleh Sony.
“Melihat berbagai fitur yang ada, kami selalu memberikan harga yang pantas. Kami telah belajar banyak dari PS3,” kata Shuhei Yoshida, senior VP of product development, SCEI.
Sony NGP memang merupakan konsol game genggam yang paling dinanti. Ketersedian serta harga resmi produk ini kabarnya akan diumumkan oleh Sony pada pameran Electronic Entertainment Expo (E3) pada bulan Juni 2011.

Advertiser

About